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Developing Integer Calibration Weights for
Census of Agriculture

Luca Sartore , Kelly Toppin, Linda Young, and Clifford Spiegelman

When conducting a national survey or census, administrative data may be available
that can provide reliable values for some of the variables. Survey and census estimates
should be consistent with reliable administrative data. Calibration can be used to improve
the estimates by further adjusting the survey weights so that estimates of targeted vari-
ables honor bounds obtained from administrative data. The commonly used methods
of calibration produce non-integer weights. For the Census of Agriculture, estimates
of farms are provided as integers so as to insure consistent estimates at all aggregation
levels; thus, the calibrated weights are rounded to integers. The calibration and rounding
procedure used for the 2012Census of Agricultural produced final weights that were sub-
stantially different from the survey weights that had been adjusted for under-coverage,
non-response, and misclassification. A newmethod that calibrates and rounds as a single
process is provided. The new method produces integer, calibrated weights that tend to
be consistent with more calibration targets and are more correlated with the modeled
census weights. In addition, the new method is more computationally efficient.
Supplementary materials accompanying this paper appear online.

Key Words: Discrete optimization; Coordinate descent; Rounding to integers; Local
minimizer; Survey weights estimation; Relative errors.

1. INTRODUCTION

Weights are often adjusted to reduce non-response and coverage errors in a census or
a survey. The application of interest here is the United States (US) Census of Agriculture,
which use a capture–recapture methodology. However, capture–recapture has been used
to evaluate coverage in the US Census of population (see Xi and Tang 2011; Griffin and
Mule 2008; Mule 2008; Alho et al. 1993; Hogan 1993). Other methods have been used to
adjust weights for coverage or response (see Young et al. 2013; Henry and Valliant 2012;
Alho 1990; Tilling and Sterne 1999; Cochran 1978). In all these cases, the weights are
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generally non-integer and may not provide estimates equal to known population values.
Weighting calibration methodology can provide a set of better weights for censuses or any
survey for which administrative totals are available. These calibrated weights are assigned
to respondent records to account for under-coverage, non-response, misclassification, and
fluctuations from known population values. A two-step approach is used to make the adjust-
ment. First, the census or survey design weights are initially adjusted to compensate for
under-coverage, non-response, and/or misclassification. Second, calibration is applied to
further adjust the weights so that estimates are consistent with population totals obtained
from reliable administrative data and other trusted sources.

The US Department of Agriculture’s (USDA) National Agricultural Statistics Service
(NASS) used the before-mentioned weighting strategy with an additional step of rounding
to integers of the post-calibrated weights for its 2012 Census of Agriculture. This rounding
step is critical because it ensures that all NASS tables and breakdowns, including those
done at the county level, provide counts of farms (not fractional farms) that sum to the grand
total. The calibration and rounding phases proved challenging during the 2012 Census
of Agriculture. In reviewing the 2012 methodology in preparation for the 2017 Census
of Agriculture, it became clear that the process of calibration as well as the subsequent
rounding of the final weights to integer values needed improvement. Thus, a new method
that produces calibrated, integer-valued survey weights was developed and is the focus of
this paper.

In the next section, the needs for new approaches to calibration and rounding are high-
lighted. Section 1.2 provides a brief overview of the history of calibration. The problem
of rounding the calibrated weights to integer values is described in Sect. 1.3. Section 1.4
provides a short introduction about coordinate descent algorithms. A combined calibration
and rounding method is presented and developed in Sect. 2. In Sect. 3, the new approach is
applied to the data from the 2012 Census of Agriculture, and the results are compared to the
calibration and rounding approach used in 2012. Final remarks and conclusions are found
in Sect. 4.

1.1. STUDY PROBLEM: A REVIEW OF THE 2012 CENSUS OF AGRICULTURE

NASS conducts hundreds of surveys each year and prepares reports that cover every
aspect of US agriculture, including production of commodities, food supplies, prices paid
and received by farms, and farm finances. In the years ending in 2 and 7, NASS also conducts
the Census of Agriculture, which provides information on the characteristics of US farms
and ranches and the people who operate them. The Census’s goal is to account for all farms
in the USA. Census estimates are produced at the national, state, and county levels and are
used by federal, state, and local governments as well as those who provide services to farms
and rural communities. The Census provides a foundation for farm programs and policies,
and it impacts community planning, availability of operational loans, and other funding.

Data for the Census of Agriculture are primarily collected from mailed questionnaires.
NASS maintains a list frame of agricultural operations in the USA. These potentially meet
USDA’s farm definition: any place from which $1000 or more of agricultural products were
produced and sold, or normally would have been sold, during the year (O’Donoghue et al.
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2009). At a specific time, the continuous updates are momentarily interrupted, and the list
frame becomes the Census Mail List (CML). All operations on the CML are asked to fill out
the Census questionnaire, either online or bymail. Keeping the CML as complete as possible
is an ongoing NASS effort, but it does not include all US farms, resulting in list under-
coverage. Because some farms on the CML do not respond to the Census, non-response is
present. The operations that do respond are classified as either farms or non-farms based
on their response.Misclassification occurs when some non-farms are classified as farms, or
vice versa. To adjust for under-coverage, non-response, and misclassification NASS uses
capture–recapture methodology, also known as dual-system estimation (DSE) (see Young
et al. 2017, for details).

NASS obtains information on most commodities from administrative sources, such as
USDA Farm Service Agency program data, Agricultural Marketing Services market orders,
livestock slaughter data, and cotton ginning data. In 2012, calibration was conducted at the
state level for all states except Alaska to ensure that the Census estimates were consistent
with state-level administrative data for commodity production. For each state, eight char-
acteristics of farm operations or farm operators were estimated from the DSE weights and
used as target values for calibration: 8 categories for the value of agricultural sales, 2 age
categories, an indicator for female, 4 categories of race, an indicator for Hispanic origin of
the principal farm operator, four sales categories of the 10 major commodities (40 total cate-
gories), and 7 categories of farm type. In addition, some commodity estimates were included
as targets. Each target was calibrated within a pre-specified tolerance range, which was gen-
erally less than 2% of the target. Each state was calibrated separately. The capture–recapture
adjusted weights were used as the starting values for the calibration process. However, they
were first truncated to be in the interval [1, 3] to enable more of the targeted variables to be
within the specified ranges while keeping the calibrated weights within reasonable limits.
Then, through calibration, adjusted weights were obtained using an iterative algorithm to
solve a constrained least squares problem with the restriction that the calibrated weights
were in a specified range. The Census of Agriculture produces estimates at various levels
of geography, including the national, state, and county levels. If weights do not have an
upper bound, unreasonable estimates may result at the lower levels of geography, especially
at the county level. The upper bound varied depending on the size and type of farm. Most
farms had weights restricted to the interval [1, 6] (Fetter 2009; Théberge 1999). For some
large and/or unique farms, the weights were further restricted to one, two, or three, depend-
ing on the farm’s influence on the overall production. These are referred to as restricted
records.

After calibration, it was rare that all estimates were in the range of their respective targets
with all weights being within [1, 6] (Fetter et al. 2005). In these cases, the targets were
prioritized. In 2012, the number of farms, total land in farms, and the top cash-receipt
commodities accounting for 80% of the state’s production were given the highest priority.
Within the set of priority targets, the target whose estimate was furthest from the target
value was included first. Once that target was hit, the next target with the estimate furthest
from the target value was included. If a target could not be hit, it was removed from the list
of targets and the next target with the estimate furthest from the target value was included.
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Once this process was complete, the step-wise algorithm was again used to calibrate the
remaining targets, which had equal priority.

Through calibration, the output weights were set to several decimals; however, Census
results are published at the integer level. Rather than rounding estimated totals, weights
were rounded to integers. This ensures that all of NASS’s published tables and breakdowns,
including those at the county level, provide counts of farms (not fractional farms) that
sum to the correct grand totals (Scholetzky 2000). Integer weights also guarantee that any
user-summary will correctly add up to any level of aggregation.

The 2012 rounding methodology (Kott 2004) used by NASS had a random component.
As a consequence of rounding, it was common for some of the calibration equations satisfied
during calibration to no longer be satisfied after rounding. Further, the two processes together
often produced weights that were quite different from the adjusted (DSE) weights. Since
the DSE methodology was used to account for under-coverage, non-response, and misclas-
sification in the 2012 Census of Agriculture, the after-calibration weights (final weights)
should be ideally close to the DSE weights. However, this was not always the case at the
conclusion of calibration, and it may have caused unnecessary errors for the commodity and
demographic variables that were not calibrated.

Given these issues associated with 2012 calibration and rounding methodologies,
improvements in the processes of calibration and subsequent rounding of the post-calibrated
weights to integerweightswere given high priority for the 2017Census ofAgriculture. Thus,
a new method that produces calibrated, integer-valued survey weights was developed. The
new approach differs from existing ones in two important ways. First, weights are rounded to
integers, and then, the optimization is performed by dealing with integer numbers only. Sec-
ond, the calibration weights are optimized in order to minimize the errors of the totals from
the benchmarks while satisfying the range restrictions on the weights instead of minimizing
the distance from the DSE weights.

1.2. CALIBRATION: AN OVERVIEW

Lemel (1976) initially introduced calibration to improve the estimates of population
totals. Calibration gained importance after Deville (1988), and Deville and Särndal (1992)
generalized it. Their methods modify the adjusted weights that appear in the Horvitz–
Thompson estimator (Horvitz and Thompson 1952). Suppose thatU = {1, 2, . . . , N } is the
set of N units in a finite population. Let tx = ∑N

i=1 xi be a total of interest for the variable
x . Given a sample S = {1, 2, . . . , n < N } with adjusted weights di = 1/πi , for any i ∈ S,
an estimate for tx is given by the Horvitz–Thompson estimator t̂HTx = ∑n

i=1 di xi . Let yi
be a vector of variables available for the i-th unit in the sample S for which the population
totals are known: ty = ∑N

i=1 yi . These known totals are the calibration targets. However,
the Horvitz–Thompson estimates and the known population totals are often not equal, i.e.,
t̂HTy = ∑n

i=1 diyi �= ty, where n denotes the sample size. Calibration resolves this issue by
using auxiliary variables to produce the calibration estimator t̂Calx = ∑n

i=1 wi xi , where wi

are the calibration weights. Calibration minimizes a distance measure between wi and the
design weights di while satisfying the calibration equations
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n∑

i=1

wiyi = ty. (1)

Deville and Särndal (1992) provided some required properties of the distance measure
G(w,d) and some examples of distance measures. A distance measure of particular impor-
tance is the generalized weighted least square given by

1

2

n∑

i=1

(wi − di )2

qidi
, (2)

where 1/qi is a known positive weight, which is set to a constant usually equal to 1, or
to any other quantity unrelated to di (Deville and Särndal 1992). The minimization of
Eq. (2) gives wi = di

(
1 + qiy�

i λ
)
, where λ is a vector of Lagrange multipliers given by

λ = (∑n
i=1 diqiyiy

�
i

)−1
(
ty − t̂HTy

)
. The resulting generalized regression estimator of tx

is

t̂GREx =
n∑

i=1

wi xi = tHTx +
(
ty − t̂HTy

)�
Bs,

where Bs = (∑n
i=1 diqiyiy

�
i

)−1 ∑n
i=1 diqi xiyi . Although a number of distance measures

have been proposed and studied (including those found in Deville and Särndal 1992), t̂GREx is
a good point of reference since it has a simple closed-form solution. The calibration estima-
tors derived from many other distance measures are also asymptotically equivalent to t̂GREx .
Singh and Mohl (1996) heuristically justified the use of calibration estimators, provided
some computational algorithms, and compared various methods in terms of weight distribu-
tion, estimates, precision, and computational burden. They also distinguished between two
types of methods:

1. those that satisfy the calibration equations and iterate until the range restrictions on
the weights are met;

2. and those that satisfy the range restrictions and iterate until the calibration equations
are met.

They concluded that even though both methods are asymptotically equivalent to the regres-
sionmethod, the interval length of the range restrictions has an impact on the point estimates
and associated uncertainty. In fact, neither method may converge to a solution within a rea-
sonable time, if the interval of acceptable weights is short. Théberge (1999) extended the
calibration techniques to estimate linear parameters of the population other than totals and
means. In addition, when the calibration does not allow for the existence of an optimal solu-
tion, he provided a sub-optimal alternative. His method is based on the computation of the
calibration weights through a given estimator that exploits linear algebra properties. Duch-
esne (1999) developed a method that provides robust estimates and satisfies the calibration
equations while taking into account the range restrictions on the weights. His procedure
performs Newton’s iterations to compute the weights according to the approach adopted by
Deville and Särndal (1992) by using a restrictedmean squaremetric. The estimator is asymp-
totically equivalent to that originally provided by Deville and Särndal (1992). Théberge
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(2000) further studied the impact of imposing restrictions on the calibration weights and
discussed their asymptotic behaviors and the effect of outliers and extreme weights.

Estevao and Särndal (2000) proposed an alternative approach to the calibration problem
called the “functional form method.” The functional form method removed the limitation
that the calibration weights minimize a distance measure. Instead, the calibration weights
{wi }i∈S are required to satisfy calibration Eq. (1) and be of the “functional form”

wi = di Fi
(
κ̂

�xi
)

, (3)

where F(·) is monotonic function such that F(0) = 1 and F ′(0) = 1 and κ̂ is a vector
of estimated coefficients. F(·) is called the functional equation. This expanded definition
of calibration proved helpful for expanding calibration into the realm of adjustments for
non-response and coverage errors (Kott 2006).

Some popular functional forms are

1. linear functional
F(u) = 1 + u; (4)

2. exponential functional
F(u) = exp(u); (5)

3. truncated linear functional

F(u) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + u, if L − 1 ≤ u ≤ U − 1,

U, if u > U − 1,

L , if u < L − 1,

(6)

where U and L are the upper and lower bounds, respectively;

4. logit functional

F(u) = L(U − 1) +U (1 − L) exp(Au)

(U − 1) + (1 − L) exp(Au)
, (7)

where

A = U − L

(1 − L)(U − 1)
.

The “linear functional form” can produce negative or extreme weights. The exponential,
truncated linear, and logit functionals are often used to counter these problems. However,
a lack of closed forms for the exponential, truncated linear, and logit functionals leads to
situations where their numerical solvers may not converge.

NASS used a version of the truncated linear functional equation (6) for weight calibration
in its 2002, 2007, and 2012 Censuses. However, it was often the case that there was not
a set of weights that satisfied both Eqs. (1) and (6). The usual solution is to relax some
calibration equations (soft targets) while keeping others strict (hard targets). However, the
relaxation of the calibration equations still did not allow the range restrictions to be met.
Furthermore, the calibration methodologies reviewed above produce non-integer, calibrated
weights.
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1.3. ROUNDING

As stated before, givenNASS’s need for integerweights, a rounding algorithm is required.
The literature on rounding in combination with calibration is extremely sparse. The simplest
approach to rounding would be to convert the non-integer weights into integers by rounding
down if the decimal part is less than 0.5 and rounding up otherwise.

This can be problematic since thismethod can increase or decrease theweighted estimates
enormously. For example, if a single producer accounts for a quarter of a state’s production,
then rounding their weight up or down changes the total production drastically. The rounding
method must be cognizant of that.

In order to minimize the change in the weighted estimates for important census variables,
such asweighted number of farms in a county andweighted total landwithin a county, NASS
used probabilistic rounding with the probability of rounding a weight up to its ceiling being
proportional to its decimal part (for further details see Kott 2004). While this rounding
methodology stabilizes the counties’ farm and land counts, it randomizes the other weighted
estimated totals.

As a consequence of the probabilistic rounding, it was common for someof the calibration
equations satisfied during calibration to no longer be satisfied after rounding. Further, the
two processes, calibration and rounding, together often produced weights that were quite
different from the input DSE weights. A new algorithm was developed to produce integer
calibrated weights. This new approach is called integer calibration (INCA), and it is based
on a discrete coordinate descent algorithm.

1.4. COORDINATE DESCENT ALGORITHMS: AN OVERVIEW

The first coordinate descent algorithm was proposed by Cauchy (1847) to solve a system
of equations with several variables. Several improvements have been made since then, and
it has many applications in machine learning and statistics (Wright 2015). It is especially
used to minimize an objective function whose Hessian is singular almost everywhere or too
cumbersome to evaluate.

Coordinate descent methods minimize a continuous function f : Rn → R,

min
w

f (w) = f (w1, . . . , wn),

wherew ∈ R
n . Theminimization is performed iteratively.At each step k, a single component

ik of the gradient ∇ f in w is evaluated, and the value of wik is adjusted in the opposite
direction of its gradient component such that f (wk+1) < f (wk). These sequential updates
are formulated as

wik ← wik − α sign
([∇ f ]ik

)
,

where α represents the length of the adjustment and [∇ f ]ik denotes the ik-th component of
∇ f (Wright 2015).

In order to reduce the number of iterations, the index ik can be selected such that the
function f is minimized the most. The efficiency of several selection strategies was studied
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by Nutini et al. (2015), who concluded that the Gauss–Southwell rule (Southwell 1940) is
among the most efficient selection criteria. In fact, the index ik is chosen such that the size
of the gradient component |[∇ f ]ik | is the largest.

2. INTEGER CALIBRATION

In this section, INCA’s approach for solving the calibration problem by reformulating
it into an optimization problem is established. INCA consists of two sub-algorithms. The
first, called rounding, is designed to provide an initial set of integer weights that can satisfy
NASS publication requirements. The adjusted weights for under-coverage, non-response,
andmisclassification are rounded using a computationally efficient procedure thatminimizes
the error between target values and the weighted totals. The latter sub-algorithm performs
a coordinate descent by adding or subtracting integer units to further reduce the distance of
the estimates from the targets.

Several computational solutionswere implemented to decrease the number of iterations of
the algorithms and to perform the minimum number of operations to calculate the quantities
needed to provide optimal integerweights. In fact, distinct objective functions are assigned to
each sub-algorithm.When rounding, the objective function is designed to force theweighted
totals to be closer to the target values and a double penalization is assigned whenever the
weighted totals lie outside specified boundaries. Thus, the roundedweights are a sub-optimal
initial point for the problem formulated by the calibration objective function, which further
forces theweighted totals to bewithin the boundarieswithout taking into account the position
of calibration targets.

2.1. NOTATION

The following notation is used in this section.

d An n-dimensional vector of initial weights

w An n-dimensional vector of calibrated weights

lw An n-dimensional vector of lower bounds for the calibrated weights

uw An n-dimensional vector of upper bounds for the calibrated weights

A A p × n matrix of collected data

ai An n-dimensional vector with components of the i-th row of matrix A

y A p-dimensional vector of targets (known reliable totals)

ly A p-dimensional vector of lower bounds for the targets

uy A p-dimensional vector of upper bounds for the targets

φ A nonnegative scalar used as tuning parameter

The calibration problem can be reformulated as the following optimization problem:

min
lw≤w≤uw

f (w) = min
lw≤w≤uw

[φG(w) + F(w)], (8)
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subject to the boundary constraints:

ly ≤ Aw ≤ uy, (9)

where F(w) is an objective function that has a different form in the rounding and calibration
sub-algorithms. The function G(w) = ‖w − d‖1. Furthermore, to guarantee integer solu-
tions,w is restricted to integers in the interval of [lw,uw]. Similarly to the LASSO regression
methods (Tibshirani 1996), the constant φ is used as a trade-off between the objective func-
tion and the distance between DSE and calibrated weights. According to Théberge (1999)
andDuchesne (1999), it is possible that no solution to the problem in (8)may exist. However,
the existence of a sub-optimal solution can be guaranteed by the relaxation of the constraints
in (9), which can be reformulated to be included as part of the objective function through
F(w).

2.2. INCA ROUNDING SUB-ALGORITHM

INCA rounds each decimal weight by considering the contributions of the lower and
upper integers on the objective function. To restate the problem, the goal is to solve (8)
subject to w ∈ N , where N = {w ∈ N

p : lw ≤ w ≤ uw}.
The objective function F(w) of the rounding sub-algorithm is defined as

F(w) = 2
p∑

i=1

|yi − ŷi |
ui − li

+
p∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

(δ − ui + ŷi )/(ui − δ), if ŷi > ui − δ,

(δ + li − ŷi )/(li + δ), if ŷi < li + δ,

0, otherwise,

(10)

where ŷi = a�
i w, and if the denominator is zero in any fraction, it is replaced with 1. The

scalar δ is a positive constant that prevents false convergence toward unstable solutions, and
it is used to shrink the length of the intervals provided around the targets y. The aim of
the rounding objective function in (10) is twofold: While forcing the calibrated totals into
the target intervals (second addend), it brings the calibrated totals close to the hard targets
(first addend). Since the initial vector of real weights is rounded by the minimization of the
rounding objective function (10), the integer solution produces totals that might be already
an optimal solution for the objective function used for calibration.

The sub-algorithm starts from an initial set of adjusted weights that is forced to be within
the feasible setN . This is accomplished by assigning the values of the lower or upper limits
to the weights according to the following rule:

w∗
i =

⎧
⎪⎪⎨

⎪⎪⎩

lwi , if wi < lwi ,

uwi , if wi > uwi ,

wi , otherwise,

(11)

for any i = 1, . . . , p.
The rounding sub-algorithm ensures that the integer approximation of the truncated

weights (11) reduces the value of the rounding objective function in (10) by optimizing the
following problem:
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min�w∗≤w≤�w∗�[φG(w) + F(w)]. (12)

This result is achieved by selecting the upper or lower integer of each non-integer weight
such that the minimum formulated in (12) is attained. A sub-optimal solution is obtained
by processing a sequence of weights that is formed by assigning the highest priority to the
weights having the largest absolute value of the components of the gradient vector. The
regular rounding method (i.e., �wi + 1

2) is applied to those weights having the gradient
equal to zero. The result of these operations is the starting set of integer weights for the
coordinate descent sub-algorithm.

2.3. INCA COORDINATE DESCENT SUB-ALGORITHM

Coordinate descent is an optimization technique that successivelyminimizes an objective
function along coordinate directions or coordinate hyperplanes. A coordinate selection rule
is used at each iteration k for the determination of the coordinate or block of coordinates to
change by maintaining all the others fixed, e.g., the index i ∈ {1, 2, 3, . . . , n} is chosen for a
given initial vector w0 = (w0

1, w
0
2, w

0
3, . . . , w

0
n), and the solution that minimizes a function

f is then obtained as

wk+1
i = min

wk
i

f
(
wk
1, w

k
2, w

k
3, . . . , w

k
n

)
.

This step is repeated until a stopping condition is satisfied.
The objective function F(w) of the calibration sub-algorithm is defined as

F(w) =
p∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

(yi − ŷi )/(yi − ui + δ), if ŷi > ui − δ,

(yi − ŷi )/(yi − li − δ), if ŷi < li + δ,

0, otherwise.

(13)

As in the rounding objective function (10), the denominator is replaced with 1 if it is zero in
any fraction. This function is designed to lessen the number of iterations during calibration.
The sub-algorithm stops when no unit adjustment of the weights leads to any improvements,
or when each total is within its boundaries. An optimal value of δ > 0 can be found via cross-
validation methods, but these are too expensive in computational terms. Due to the intrinsic
nature of this objective function, the constant δ improves the quality of the calibratedweights
by reducing the accumulation of totals at the target boundaries. Thus, the minimization of
this function enforces the calibration equations within a certain degree of tolerance.

The INCA algorithm performs the discrete search for the optimal integer weights via
coordinate descent with the order of possible descent coordinates based on the gradient.
The INCA coordinate descent sub-algorithm can be summarized by the following steps:

1. Evaluate the gradient of the calibration objective function atw(0) = (w
(0)
1 , w

(0)
2 , · · · ,

w
(0)
n ).

2. Determine the order of the possible descent coordinates based on the largest absolute
gradient component.
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3. Move the appropriate weight and call the new value w(1).

4. Repeat steps 1 through 3 with w(0) by w(1).

In the INCA coordinate descent, a descent on each coordinate/weight can be regarded
as descent in the direction ± 1. For each iteration, the gradient of the calibration objective
function is computed and the list of priority indexes is produced using the absolute of the
weight’s gradient components. INCA processes the first weight wk on this list, the weight
with the largest absolute gradient component, by determining whether the change of the
selected weight, wk ± 1, decreases the calibration objective function. If so, then the weight
wk is updated to this value and INCA moves to the next iteration, recalculating the gradient
and the priority list. If not, the next weight on the list is processed and so on. The algorithm
stops when the unit shifts do not produce any improvement as measured by the calibration
objective function. The selection of coordinates based on the gradient is called the Gauss–
Southwell rule (Nutini et al. 2015).

Before discussing the convergence of the algorithm, some definitions are needed. Let
w∗ ∈ N .

Definition 1. The unit neighborhood of w∗, U (w∗) is defined by

U (w∗) = {
w ∈ N | wi ∈ {w∗

i − 1, w∗
i , w

∗
i + 1}, i = 1, . . . , p

}
.

Definition 2. (Local minimizer) A point w∗ ∈ N is called an U local minimizer of
f (·) over N if f (w∗) ≤ f (w) for all w ∈ U (w∗) and w �= w∗.

Luo and Tseng (1992) provided some results on the convergence of the sequence {wr }
generated by the coordinate descent method based on the Gauss–Southwell rule. These
results show that INCA steps converge at least linearly to an element in the set of local
minimizers.

3. CALIBRATION OF THE 2012 CENSUS OF AGRICULTURE

In this study, the weights of respondent farms in 49 states were calibrated with INCA.
The weights of the farms in Alaska were not considered, since Alaska is excluded from the
calibration process. Each state was treated separately from the others to achieve an efficient
use of the computational resources both in terms of memory allocation and processing time.

The data collected for the 2012 US Census of Agriculture were used to create a common
environment with the same setting for both INCA and the old algorithm. This means that the
calibration targets, the target boundaries, and the weight restrictions of each state were set
identical to those employed for the production of the official estimates. The DSE weights
of the farms in the 49 states were generated with the methodology presented in Sect. 1.1,
and used as a common starting point to test and compare the performances of the proposed
algorithm.

To show the superiority of INCA compared to the 2012 methodology, a comparison
between the numerical achievements of the two algorithms is provided. Three general
indexes designed to evaluate the effectiveness of INCA were recorded for each state:
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Figure 1. Missed target intervals comparison between INCA and the previous methodology for the 25 states.

• the number of calibrated totals that do not lie within the intervals containing the
calibration targets,

• the correlation between the DSE weights and the final weights, and

• the computational running time measured in seconds.

The first index measures how effectively the methods produce the intended results. The
second index was provided as an alternative to the mean absolute deviation. In fact, both
can quantify how close the final weights are to the initial. The last index determines the
computational efficiency of a calibration procedure.

INCA produced less than 5 missed target intervals for the majority of states (38 of the 49
states), and only two states had 10 or more missed target intervals. The 2012 method missed
less than 5 target intervals in 14 states and more than 10 in 10 states. In 44 of the 49 states,
INCA attained more targets than the 2012 method. Maine, New Hampshire, Nevada, South
Carolina, and Vermont are the only states where the final weights from the 2012 method
achieved more target intervals than INCA (see Figs. 1 and 2). The inventory for pullets,
layers at least 20weeks old, beef cows, hogs and pigs, other crops (such as grass seed, hay,
grass silage, and mint), the number of farms with a total value of production (TVP) between
$1,000,000 and $2,500,000, and the number of non-equine farms with TVP less than $2500
were among the most difficult target intervals to achieve. Each of these were missed in at
least 10 states. From a computational point of view, Arizona, New Mexico, Nevada, Texas,
and the states in New England were the most complex to calibrate since 1% or more of the
DSE weights was greater than 6; therefore, smaller weights were forced to increase to meet
most of the calibration targets.

The correlations between the calibrated weights from INCA with the DSE weights are
higher than those computed with the weights produced by the 2012 method, with the excep-
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Figure 2. Missed target intervals comparison between INCA and the previous methodology for the 24 states.
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Figure 3. Correlation between final weights and the DSE weight for INCA and the previous methodology for the
25 states.

tion of Colorado (see Figs. 3 and 4). The correlations obtained with the weights produced
by INCA for a majority of the 49 states (34 states) have a correlation of at least 0.5 with their
capture–recapture weights (DSE). On the other hand, a majority of the correlations obtained
with the weights from the old method are mostly below 0.5 (43 states). The old algorithm
drastically reduced these correlations in Arizona, Maine, New Hampshire, Nevada, and
Vermont.
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Figure 5. The computation time of INCA for the 49 states included in the Census of Agriculture calibration.

The speed of INCA is remarkable compared to the 2012 method. Using INCA, each state
was processed in less than 7min (see Fig. 5), while the 2012 method needed about 40min
(on average) per state. This radical computational improvement in INCA is also due to the
adoption of a sparse representation of data matrices so that redundant information is not
processed.
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The variances of the point estimates can be calculated using re-sampling methods (Kott
2001; Antal and Tillé 2011; Mashreghi et al. 2016).

4. CONCLUSION

For some applications, calibrated integer weights are needed to develop estimates from
survey data. INCA is a new integer calibration algorithm that is a significant upgrade over the
current approach of calibration followed by rounding. INCA is the first routine that combines
calibration and rounding; in fact, the traditional 2-step process, where calibration takes place
before rounding, is reversed in INCA with rounding occurring before calibration. INCA
employs a simple yet subtle solution to the calibration problem while producing integer
weights. Past calibration methods attempt to minimize the distance of the calibrated weights
from the design weights. In contrast, INCA reduces the relative errors of the calibration
equations while satisfying the range restrictions of the weights.

INCA relaxes the benchmark constraints and seeks to satisfy them simultaneously. The
constraints are relaxed by providing bounds on the population values. This generally makes
it more likely that an optimal solution is found compared to considering only exact bench-
mark constraints. To our knowledge, all other calibration methods consider the benchmark
constraints sequentially. The two features of having a range of values associated with each
benchmark constraint and processing all benchmark at once allow INCA to meet more
targets concurrently and be computationally more efficient.

Moreover, by dealing with integer numbers only, the optimization performed by INCA
is more robust and stable. In fact, INCA uses a gradient-based procedure that bypasses
the inversion of the Hessian matrix. Conventional methods use pseudo-inverse matrices
as stated by Rao and Singh (1997), but the presence of multicollinearity among the vari-
ables often leads to unstable estimates. The removal of the calculation of inverse matrices
allows INCA to provide accurate results even when the data have variables with perfect
collinearity.

The case study with the 2012 Census of Agriculture data highlights how INCA misses
fewer targets than the 2012 algorithmwhile producing final integer weights that are closer to
theDSEweights. The computational efficiency of INCA is impressive.Additional numerical
tests were performed by simulating an experiment based on a 22 factorial design. The source
code and the results of these tests are included in the supplemental materials of this paper.

[Received November 2017. Accepted October 2018.]

APPENDICES

A GRADIENTS OF THE OBJECTIVE FUNCTIONS

The gradient of the objective function used for the rounding is

∇F(w) = −A�v,
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where the components of v are given by

vi = 2
sign(εi )

ui − li
+

⎧
⎪⎪⎨

⎪⎪⎩

1/(ui − δ), if a�
i w > ui − δ,

−1/(li + δ), if a�
i w < li + δ,

0, otherwise,

(14)

where εi = yi − a�
i w, for any i = 1, . . . , n.

The gradient of the objective function used for the calibration is

∇F(w) = −A�v,

where the components of v are given by

vi =

⎧
⎪⎪⎨

⎪⎪⎩

1/(yi − ui + δ), if a�
i w > ui − δ,

1/(yi − li − δ), if a�
i w < li + δ,

0, otherwise.

(15)

B EXAMPLE

Consider the following illustration of the INCA methodology. To simplify the computa-
tion of the objective function and its gradient, let φ = 0.

• The setup
Bounds on final calibrated weights

[1, 6]

The targets

y� =
[
92 61 72

]

Targets’ lower bound

ly =
[
88 58 69

]

Targets’ upper bound

uy =
[
96 64 75

]

The data matrix

A =
⎡

⎢
⎣

3 0 5 7 9
1 2 0 8 5
6 9 5 4 0

⎤

⎥
⎦
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The DSE weights

w�
DSE =

[
15.9 0.5 1.3 3.2 1.8

]

Initial totals

ŷ� =
[
63.1 42.6 64.3

]

• Rounding

– Truncation (Pre-rounding adjustments)
First, truncate the weights outside the bounds to either 1 or 6.

w� =
[
6 1 1.3 3.2 1.8

]

– Initial errors and objective function calculations
Initial errors are given by

ε = y − Aw

⎡

⎢
⎣

28.9
18.4
7.7

⎤

⎥
⎦ =

⎡

⎢
⎣

92
61
72

⎤

⎥
⎦ −

⎡

⎢
⎣

3 0 5 7 9
1 2 0 8 5
6 9 5 4 0

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

6
1

1.3
3.2
1.8

⎤

⎥
⎥
⎥
⎥
⎥
⎦

For example, by setting δ = 2, the initial total loss is given by

17.48 =2 ∗ (92 − 63.1)/(95 − 89) + (− 63.1 + 89 + 2)/91+
2 ∗ (61 − 42.6)/(65 − 57) + (− 42.6 + 57 + 2)/59+
2 ∗ (72 − 64.3)/(75 − 69) + (− 64.3 + 69 + 2)/71

– The gradient of the rounding objective function

∇F(w) = −A�v.

−A� = −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 1 6
0 2 9
5 0 5
7 8 4
9 5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

v =
⎡

⎢
⎣

0.239
0.317
0.319

⎤

⎥
⎦
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∇F(w) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 2.948
− 3.505
− 2.790
− 5.485
− 3.736

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 1 6
0 2 9
5 0 5
7 8 4
9 5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

0.239
0.317
0.319

⎤

⎥
⎦

– Order of processing
By taking the absolute value of the gradient

|∇F(w)| =
[
2.948 3.505 2.790 5.485 3.736

]
,

the following processing order of the weights is obtained:

w4, w5, w2, w1, w3

– Processing the weight in position 4

wlw4 =
[
6 1 1.3 3 1.8

]

wuw4 =
[
6 1 1.3 4 1.8

]

The total loss using wlw4 is given by

18.67 = 2 ∗ (92 − 61.7)/(95 − 89) + (− 61.7 + 89 + 2)/91

+ 2 ∗ (61 − 41)/(65 − 57) + (− 41 + 57 + 2)/59

+ 2 ∗ (72 − 63.5)/(75 − 69) + (− 63.5 + 69 + 2)/71

The total loss using wuw4 is given by

12.73 = 2 ∗ (92 − 68.7)/(95 − 89) + (− 68.7 + 89 + 2)/91

+ 2 ∗ (61 − 49)/(65 − 57) + (− 49 + 57 + 2)/59

+ 2 ∗ (72 − 67.5)/(75 − 69) + (− 67.5 + 69 + 2)/71

Since the objective function is smaller usingwuw4 than usingwlw4 ,w4 is rounded
to 4. The new total loss is 12.73.

– Processing the remaining non-integer weights
The weight w5 is similarly rounded, and then, w3 is processed in the same way.
The following output is the resulting vector of weights after the completion of
the rounding sub-algorithm:

w� =
[
6 1 2 4 2

]
,

with a total rounding loss of 9.089.
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• Calibration

– Computing the calibration total loss

20 = (92 − 74)/(92 − 88 − 2)

+ (61 − 50)/(61 − 58 − 2)

– The gradient of the calibration objective function

∇F(w) = −A�v.

v =
⎡

⎢
⎣

0.5
1
0

⎤

⎥
⎦

∇F(w) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 2.5
− 2

− 2.5
− 11.5
− 9.5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 1 6
0 2 9
5 0 5
7 8 4
9 5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

0.5
1
0

⎤

⎥
⎦

– Order of processing
By taking the absolute value of the gradient

|∇F(w)| =
[
2.5 2 2.5 11.5 9.5

]
,

the following processing order of the weights is obtained:

w4, w5, w3, w1, w2

– Iteration 1: processing w4

Compute F(w) by adjusting w4 in the opposite direction of the gradient. Thus,
w4 + 1 = 5, and if w4 = 5, then F(w) = 11.5.

11.5 = (92 − 81)/(92 − 88 − 2) + (61 − 58)/(61 − 58 − 2) + (72 − 75)/(72 − 75 + 2)

When w4 = 5, then F(w) < 20. Therefore, the updated weights are

w� =
[
6 1 2 5 2

]

– Iteration 2: set priorities for the second step of calibration

∇F(w) = −A�v.

v =
⎡

⎢
⎣

0.5
1

−1

⎤

⎥
⎦
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∇F(w) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3.5
− 7
2.5

− 7.5
− 9.5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 1 6
0 2 9
5 0 5
7 8 4
9 5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

0.5
1

−1

⎤

⎥
⎦

By taking the absolute value of the gradient

|∇F(w)| =
[
3.5 7 2.5 7.5 9.5

]
,

the following processing order of the weights is obtained:

w5, w4, w2, w1, w3

– Iteration 2: processing the weights
Compute F(w) by adjusting w5 in the opposite direction of the gradient. For
w5 + 1 = 3, then F(w) = 5.

5 = (61 − 63)/(61 − 64 + 2) + (72 − 75)/(72 − 75 + 2)

When w5 = 3, then F(w) < 11.5. Thus, the updated weights are

w� =
[
6 1 2 5 3

]

– Iteration 3: set priorities for the second step of calibration

∇F(w) = −A�v.

v =
⎡

⎢
⎣

0
− 1
− 1

⎤

⎥
⎦

∇F(w) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

7
11
5

12
5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 1 6
0 2 9
5 0 5
7 8 4
9 5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

0
− 1
− 1

⎤

⎥
⎦

By taking the absolute value of the gradient

|∇F(w)| =
[
7 11 5 12 5

]
,

the following processing order of the weights is obtained:

w4, w2, w1, w5, w3
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– Iteration 3: processing the weights

• Compute F(w) by adjusting w4 in the opposite direction of the gradient.
For w4 − 1 = 4: F(w) = 10.5

10.5 = (92 − 83)/(92 − 88 − 2) + (61 − 55)/(61 − 58 − 2)

Since if w4 = 4, then F(w) > 5, w4 is not updated. Therefore, w2 is
consider next.

• Compute F(w) forw2−1 = 0: Sincew2 cannot be 0, one cannot decrease
w2. Therefore, one moves to w1.

• Compute F(w) for w1 − 1 = 5: F(w) = 5.5.

5.5 = (92 − 87)/(92 − 88 − 2) + (72 − 69)/(72 − 69 − 2)

Since ifw1 = 5, then F(w) > 5, it is not possible to updatew1. Therefore,
one moves to w3

• Compute F(w) for w3 − 1 = 1: F(w) = 7.5.

(92 − 85)/(92 − 88 − 2) + (61 − 63)/(61 − 64 + 2)

+ (72 − 70)/(72 − 69 − 2) = 7.5

Since if w3 = 1, then F(w) > 5, there is no need to do update w3.
Therefore, one moves to w5

• Compute F(w) for w5 − 1 = 2: F(w) = 11.5.

11.5 = (92 − 81)/(92 − 88 − 2) + (61 − 58)/(61 − 58 − 2)

+ (72 − 75)/(72 − 75 + 2)

Since if w5 = 2, then F(w) > 5, it is not necessary to update w5. There-
fore, the algorithm stops.

• Final Weights
The final calibrated weights are

w� =
[
6 1 2 5 3

]
.

The final calibrated totals are

ŷ =
[
90 63 75

]
.

By construction of the matrixA, the summation of the weights is not part of the targets in
this example. The purpose of this example is to show how the algorithm works rather than
showing what type of results are attainable. At the end, the correlation between the initial
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vector of DSE weights and the final vector of calibrated weights is about 0.8, which is even
higher than those obtained in the real case example provided in Sect. 3 (see Figs. 3 and 4).
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